Type Alias: LLamaChatCompletePromptOptions
type LLamaChatCompletePromptOptions = {
maxTokens?: LLamaChatPromptOptions["maxTokens"];
stopOnAbortSignal?: LLamaChatPromptOptions["stopOnAbortSignal"];
onTextChunk?: LLamaChatPromptOptions["onTextChunk"];
onToken?: LLamaChatPromptOptions["onToken"];
signal?: LLamaChatPromptOptions["signal"];
temperature?: LLamaChatPromptOptions["temperature"];
minP?: LLamaChatPromptOptions["minP"];
topK?: LLamaChatPromptOptions["topK"];
topP?: LLamaChatPromptOptions["topP"];
seed?: LLamaChatPromptOptions["seed"];
trimWhitespaceSuffix?: LLamaChatPromptOptions["trimWhitespaceSuffix"];
evaluationPriority?: LLamaChatPromptOptions["evaluationPriority"];
repeatPenalty?: LLamaChatPromptOptions["repeatPenalty"];
tokenBias?: LLamaChatPromptOptions["tokenBias"];
customStopTriggers?: LLamaChatPromptOptions["customStopTriggers"];
grammar?: LlamaGrammar;
functions?: ChatSessionModelFunctions;
documentFunctionParams?: boolean;
completeAsModel?: | "auto"
| boolean
| {
enabled?: "auto" | boolean;
appendedMessages?: ChatHistoryItem[];
};
};Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:255
Properties
maxTokens?
optional maxTokens: LLamaChatPromptOptions["maxTokens"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:261
Generate a completion for the given user prompt up to the given number of tokens.
Defaults to 256 or half the context size, whichever is smaller.
stopOnAbortSignal?
optional stopOnAbortSignal: LLamaChatPromptOptions["stopOnAbortSignal"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:269
When a completion already started being generated and then the given signal is aborted, the generation will stop and the completion will be returned as-is instead of throwing an error.
Defaults to false.
onTextChunk?
optional onTextChunk: LLamaChatPromptOptions["onTextChunk"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:276
Called as the model generates a completion with the generated text chunk.
Useful for streaming the generated completion as it's being generated.
onToken?
optional onToken: LLamaChatPromptOptions["onToken"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:283
Called as the model generates a completion with the generated tokens.
Preferably, you'd want to use onTextChunk instead of this.
signal?
optional signal: LLamaChatPromptOptions["signal"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:285
temperature?
optional temperature: LLamaChatPromptOptions["temperature"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:286
minP?
optional minP: LLamaChatPromptOptions["minP"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:287
topK?
optional topK: LLamaChatPromptOptions["topK"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:288
topP?
optional topP: LLamaChatPromptOptions["topP"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:289
seed?
optional seed: LLamaChatPromptOptions["seed"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:290
trimWhitespaceSuffix?
optional trimWhitespaceSuffix: LLamaChatPromptOptions["trimWhitespaceSuffix"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:291
evaluationPriority?
optional evaluationPriority: LLamaChatPromptOptions["evaluationPriority"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:292
repeatPenalty?
optional repeatPenalty: LLamaChatPromptOptions["repeatPenalty"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:293
tokenBias?
optional tokenBias: LLamaChatPromptOptions["tokenBias"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:294
customStopTriggers?
optional customStopTriggers: LLamaChatPromptOptions["customStopTriggers"];Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:295
grammar?
optional grammar: LlamaGrammar;Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:297
functions?
optional functions: ChatSessionModelFunctions;Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:306
Functions are not used by the model here, but are used for keeping the instructions given to the model about the functions in the current context state, to avoid context shifts.
It's best to provide the same functions that were used for the previous prompt here.
documentFunctionParams?
optional documentFunctionParams: boolean;Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:315
Functions are not used by the model here, but are used for keeping the instructions given to the model about the functions in the current context state, to avoid context shifts.
It's best to provide the same value that was used for the previous prompt here.
completeAsModel?
optional completeAsModel:
| "auto"
| boolean
| {
enabled?: "auto" | boolean;
appendedMessages?: ChatHistoryItem[];
};Defined in: evaluator/LlamaChatSession/LlamaChatSession.ts:327
Whether to complete the prompt as a model response.
"auto": Automatically determine whether to complete as a model response based on the model used. This is a good option to workaround some models that don't support used prompt completions.true: Always complete as a model responsefalse: Never complete as a model response
Defaults to "auto".
Type declaration
"auto"
boolean
{
enabled?: "auto" | boolean;
appendedMessages?: ChatHistoryItem[];
}enabled?
optional enabled: "auto" | boolean;Whether to complete the prompt as a model response.
"auto": Automatically determine whether to complete as a model response based on the model used. This is a good option to workaround some models that don't support used prompt completions.true: Always complete as a model responsefalse: Never complete as a model response
Defaults to "auto".
appendedMessages?
optional appendedMessages: ChatHistoryItem[];The messages to append to the chat history to generate a completion as a model response.
If the last message is a model message, the prompt will be pushed to it for the completion, otherwise a new model message will be added with the prompt.
It must contain a user message or a system message before the model message.
Default to:
[
{
type: "system",
text: "For your next response predict what the user may send next. " +
"No yapping, no whitespace. Match the user's language and tone."
},
{type: "user", text: ""},
{type: "model", response: [""]}
]